-[3z^2+2z-(2z^2-5z)]+[(8z^2-[5z-z^2])+5z^2]=0

Simple and best practice solution for -[3z^2+2z-(2z^2-5z)]+[(8z^2-[5z-z^2])+5z^2]=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -[3z^2+2z-(2z^2-5z)]+[(8z^2-[5z-z^2])+5z^2]=0 equation:


Simplifying
-1[3z2 + 2z + -1(2z2 + -5z)] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0

Reorder the terms:
-1[3z2 + 2z + -1(-5z + 2z2)] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0
-1[3z2 + 2z + (-5z * -1 + 2z2 * -1)] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0
-1[3z2 + 2z + (5z + -2z2)] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0

Reorder the terms:
-1[2z + 5z + 3z2 + -2z2] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0

Combine like terms: 2z + 5z = 7z
-1[7z + 3z2 + -2z2] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0

Combine like terms: 3z2 + -2z2 = 1z2
-1[7z + 1z2] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0
[7z * -1 + 1z2 * -1] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0
[-7z + -1z2] + [(8z2 + -1[5z + -1z2]) + 5z2] = 0
-7z + -1z2 + [(8z2 + [5z * -1 + -1z2 * -1]) + 5z2] = 0
-7z + -1z2 + [(8z2 + [-5z + 1z2]) + 5z2] = 0

Reorder the terms:
-7z + -1z2 + [(-5z + 8z2 + 1z2) + 5z2] = 0

Combine like terms: 8z2 + 1z2 = 9z2
-7z + -1z2 + [(-5z + 9z2) + 5z2] = 0

Remove parenthesis around (-5z + 9z2)
-7z + -1z2 + [-5z + 9z2 + 5z2] = 0

Combine like terms: 9z2 + 5z2 = 14z2
-7z + -1z2 + [-5z + 14z2] = 0

Remove brackets around [-5z + 14z2]
-7z + -1z2 + -5z + 14z2 = 0

Reorder the terms:
-7z + -5z + -1z2 + 14z2 = 0

Combine like terms: -7z + -5z = -12z
-12z + -1z2 + 14z2 = 0

Combine like terms: -1z2 + 14z2 = 13z2
-12z + 13z2 = 0

Solving
-12z + 13z2 = 0

Solving for variable 'z'.

Factor out the Greatest Common Factor (GCF), 'z'.
z(-12 + 13z) = 0

Subproblem 1

Set the factor 'z' equal to zero and attempt to solve: Simplifying z = 0 Solving z = 0 Move all terms containing z to the left, all other terms to the right. Simplifying z = 0

Subproblem 2

Set the factor '(-12 + 13z)' equal to zero and attempt to solve: Simplifying -12 + 13z = 0 Solving -12 + 13z = 0 Move all terms containing z to the left, all other terms to the right. Add '12' to each side of the equation. -12 + 12 + 13z = 0 + 12 Combine like terms: -12 + 12 = 0 0 + 13z = 0 + 12 13z = 0 + 12 Combine like terms: 0 + 12 = 12 13z = 12 Divide each side by '13'. z = 0.9230769231 Simplifying z = 0.9230769231

Solution

z = {0, 0.9230769231}

See similar equations:

| 9(2a-4)=18 | | 4x(x+8)-4=34-2x | | 14-(x+7)=4x-3 | | 4(2-3)=5(g-2) | | 2(3x+2)=-14 | | 1/2+3/8y=2/3(12r+18) | | 101=18x | | g/3=-9 | | 5x=12x^2 | | -21a=126 | | n/-2=10 | | 3y-8=9y+28 | | 0.04(y-2)+0.02y=0.18y-0.5 | | x-22=-7 | | 12.50p+30=15.00p | | -2/3x+(-2/3)=-2 | | 5=12x | | 0.60x+0.45(30)=0.30(75) | | 0.04(y-2)+0.02y=0.18-0.5 | | -100=25y | | 3x-5=9x | | 5d-8=33(d+2)+2d | | nx=4j-5x | | m+-6=7 | | 11-u-14u+13u= | | 8x+6(2x+10)= | | 5.2(x-3)+7=4(x+1)-2 | | x^2+11-4=0 | | (-5)/(2w-10)+2=(1)/(w+5) | | x+3/2+3/4=3x/2-1 | | y/25=16 | | 2/3(1/8+2x)-3/8=5/8 |

Equations solver categories